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Abaraet--The flow field induced by the torsional oscillations of a spherical cell containing a fluid drop is 
examined. It has been found that in addition to the oscillating motion of each fluid particle there exist three 
standing vortices in every quadrant between the drop and the container. The steady streaming into the drop 
can be directed either clockwise or counterclockwise, depending on the values of the parameter of the 
fluids inside and outside the drop. Typical flow fields are shown graphically. 

1. INTRODUCTION 

The fact that an oscillating boundary can produce steady streaming in fluids has been known for 
some time. In a theoretical work, Schlichting (1932) found a periodic solution for the problem of 
an oscillating circular cylinder in an unbounded viscous fluid by the method of the two 
dimensional nonsteady boundary layer equations, It was found that only the boundary con- 
ditions at the cylinder can be satisfied, and that at a large distance the tangential component of 
velocity (Vo) is finite but not zero. Unable to satisfy the condition Vo = 0 at r = ~ he relaxed it 
to a stipulation that the tangential velocity remains bounded at the edge of the boundary layer. 
This result indicates that a potential motion which is periodic with respect to time induces a 
steady streaming at a large distance from the wall of the body. The case of an oscillating 
circular cylinder has also been investigated theoretically by Andres & Ingard (1953) and 
Holtsmark et ai. (1954). Following the same method of analysis, Lane (1955) studied the 
problem of an oscillating sphere in an unbounded viscous fluid. 

The rate of mass transfer between particles and oscillating fluids is a topic of great interest, 
an understanding of which is essential for predicting the magnitude of the beneficial effects and 
also for the design of oscillatory process equipment. Experimental verification of enhancement 
in mass transfer rates of solid-liquid boundaries by microstreaming has been found by Nybord 
(1965). 

The beneficial effect of pulsating flow on mass transfer in liquid-liquid extraction apparatus 
has been studied by Krasuk & Smith (1963). They developed an analogy between mass and 
momentum transfer for predicting mass transfer coefficients. 

It has been shown (Jameson 1964) that in certain circumstances the mechanism of the mass 
transfer is similar to that of heat transfer from a hot body in a fluctuating stream, in that the 
bulk of the transfer takes place in a steady streaming flow. A critical review of the mass 
transfer between solid spheres and oscillating fluids was given recently by Toweel & Landau 
(1976). 

There is also experimental evidence that sound waves and vibrations affect heat transfer. A 
review of the subject was given by Richardson (1967). 

Because of the difficulties associated with the three-dimensional analysis, steady streaming 
around spheres received much less attention (Wang 1965, Riley 1966). An examination of the 
flow field induced by a viscous fluid drop immersed in another translatorily oscillating 
unbounded fluid was undertaken by Zapryanov & Stoyanova (1978a, 1978b). 

The torsional oscillations of cylinders and spheres have also been discussed both theoretic- 
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ally and experimentally. Di Prima & Liron (1976) pointed out that the torsional oscillation of a 
sphere in an unbounded viscous flow induced a secondary flow in the planes containing the axis 
of rotation and calculated the effect of the flow on the torque acting on the sphere. 

Determining the behaviour of the steady streaming in the case of a bounded flow is an 
interesting, yet unanswered question. 

Tabakova & Zapryanov (1978) have investigated the unseady motion of the fluid between 
two concentric spheres when the inner one is forced to execute a torsional oscillation while the 
outer sphere remains at rest. Recently Duck & Smith (1979) have studied the flow field induced 
between oscillating cylinders. Munson & Douglas (1979) have presented theoretical and 
experimental results describing viscous incompressible flow in spherical annuli. Their theoreti- 
cal results are valid for low frequency oscillations. 

The objective of the present work is to investigate the behaviour of the flow field induced by 
the torsional oscillations of a spherical cell containing a fluid drop. It is admitted that the fluids 
inside and outside of the drop are immiscible. It is assumed that the drop is a liquid sphere 
whose center coincides with the center of the container. Therefore we neglect the effects of 
shape-mode resonances and their associated violent mechanical deformation at the globular 
surface. Of particular interest is the steady streaming induced both inside and outside the drop. 

The fluid motion is governed by a pair of coupled nonlinear partial differential equations in 
two independent variables, with singular end conditions. The problem has been solved in the case of 
high frequency oscillations of the container by the method of matched asymptotic expansions. 

If a body of typical dimension a oscillates with the velocity Uo'cos oJot in a fluid of 
kinematic viscosity v, which is otherwise at rest we can display the following dimensionless 
parameters which have appeared 

e :  Uo M 2=a2°J°, Re = U° a ,  R e s =  U°2 [1] 
~ooa ' v v ~oov" 

Since Re = ~M 2 and Re s = (Re2/M 2) only two are independent parameters. 
Furthermore, we are concerned with the situation ~ ~ I. Physically this condition implies 

that the amplitude of the oscillation is small compared with the radius of the drop a. 

2. THEORY AND RESULTS 

Consider a spherical fluid drop with radius a which is contained in a spherical cell with 
radius b(a < b). Suppose that the two spheres are concentric and adopt spherical polar 
coordinates r', 0, ~. Let the container execute a torsional oscillation with frequency too and 
angular amplitude E, so that the angular velocity of the container is [l = ¢tOo e i°'°t'. Here and in 
what follows only the real of any complex quantity wilt be considered. 

We shall suppose that the amplitude of the oscillation is small and seek a solution that is 
independent of a. Dimensionless variables will be employed throughout the analysis, and 
physical parameters pertaining to the interior of the drop will be distinguished from the 
corresponding exterior parameters by a caret. The velocity components (V'r, V~) are related to 

the stream function ~ '  by 
1 0 ~ '  , 1 0",I t' [2] 

V'r = r,E sin O 0 0 '  Vo = r' sin O 0r ' '  

Dimensionless variables and parameters are now introduced according to the scheme: 

r '=  ar, t' = tOo-iT, x12"= Ea3too ~,  V" = tooaV~, M 2 = t°°a2 [3] 
V 

The governing equations of unsteady-state motion for an incompressible Newtonian fluid in 
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terms of non-dimensional variables are 

_ _ .  [ ~  (..~_ 1911 _\ 1 a(*,D2*) 
9(D2")9¢ +~ cos 0 - r - ~ s i n  o) -~--ffff-~ ~-r~O-) 

1 9" I 202* (_O0_~r COS O_r..~sin O) ]=.~.~ O, , [41 

9n , [ 9 .  91~ _ 9 .  9n1= 1 
9¢ r 2 sin 0 [ Or 90 90 9r / ~ D21~" [5] 

Here 

D2- aZ*.sinO 0 { 1 0~,~, n = r sin OV. 

and V~ is the rotational speed. It is easy to find that ~ 2 =  (T/K)M 2, where M, fc and 3' are 
respectively the frequency parameter, the ratio of the viscosity of the interior to that of the 
exterior fluid and the ratio of the density of the interior to that of the exterior fluid. 

The boundary conditions are 
(1) No slip velocity on the wall of the cell 

* = ~ = 0 ,  f~=r2sin20e i" at r = A =  b [61 
Or a" 

(2) Zero values of the normal velocity both inside and outside of the globule 

, = ~ t = 0  at r = l .  [7a] 

(3) Continuity of tangential velocities across the interface, whereupon 

0"  = 0__~_~ n = ~ at r = 1 t7b] ar 8r ' 

(4) Continuity of shear stresses of the two fluids across the interface 

a r ~ - ~ - r ]  = K ~ k r  2 9r]  at r = l  [8] 

on (aa 
- ~ - - - ~ - / =  K \ - ~ -  - 7 /  at r = 1.  [9] 

These conditions hold when fluids are immiscible, the surface tension is constant, the 
surface viscosity effects are negligible and axial symmetry is postulated. It should be remarked 
at this point that one can use the condition requiring the balance of normal stresses to 
detetermine the shape of the fluid drop as function of Weber number W, = (f,12'/a~r), K, y and 
M, where o, is the surface tension and/2' the dynamic viscosity. Uniqueness of the solution is 
ensured by the additional conditions that the velocity be a finite continuous function of the 
position at the center r = 0. 

Reference to [4] and [5] show that in addition to the primary flow in the torsional direction 
there will be a secondary flow in the planes containing the axis of oscillation. Mathematical 
complexity of the problems [4]-[9] does not permit an analysis for arbitrary frequency. The 
parameter 1]M measures the thickness of the Stokes' layer 0(X/(v]O~o)) relative to the radius of 
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the fluid drop. When M -> 1 the space between the drop and the container is divided into three 
separate but overlapping regions: (i) two Stokes' layers of thickness 0[(coo/'~tv) ~/2] adjacent to the 
fluid drop and the container, and (ii) an intermediate region between the two boundary layers. 

We introduce the following variables: 
(i) In the boundary layer around the drop 

( r -  1)M qtM 
'7= ,,/2 ' 9 =  x / 2 '  co. [101 

(ii) In the boundary layer on the container 

( = ( a  - r)M ~/M 
x / ~ '  '~= V 2 '  ,a. j i l l  

(iii) In the boundary layer inside of the surface of the drop 

~} ( 1  - r ) M  4 /M 
= ~/2 ' ~b= V 2 '  03. [121 

Here co, o3 and 03 are the torsional velocities in the boundary layers around the drop, on the 
container and inside of the surface of the drop. 

For small E and large M the boundary value problem given by [4]-[9] can be solved by 
expanding in ~ and 1/M. We suppose that 

F : Foo + M Fo, + . . . + e2 ( Fm + M F ,  + " " ) + " " , [131 

where 

and 

where 

F = [w, fl, 03, 03] 

G = ,[Goo + 1  G o t + "  '] +,3[G,o+--~ G,, +"" "]+" ' ' 

G = [~, V,,i,, ¢, ~1. 

[141 

We look for an approximate solution for the stream function and the torsional velocity, valid 
asymptotically as ~ ~ 0  and M ~ .  The expressions obtained by truncating the expansions [13] 
and [14] after a given number of terms satisfy approximately the exact equations of motion [4] 
and [51 and the boundary conditions [6]-[9], with residuals which are bounded uniformly in 
separate but overlapping regions to known order in E and I/M. We make the unknown functions 
in the intermediate region and the unknown functions in the Stokes' boundary layers match in 
the intermediate district. In this way, Foo, Fro, G0o, Gto, etc. can be determined successively and 
any arbitrary constants are fixed either immediately or at most a few stages further on. This 
procedure is now fairly standard, and we will present only the result, without entering into the 
detailed arguments showing why the terms must have the values given here. 

Substituting [11] and [13] into [51 and equating the terms of equal powers of the angular 
displacement ~ and frequency parameter I / M  we obtain the equations: 

2 0o3oo O2o3oo _ n [15] 
Or O~ "2 - " 
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0O501 02O501 _ 
Or ~ - 0 [16] 

2 0~02 0~O502 2 , ,  _ ,  2~ 0~o5o0 [17] 

Equating the terms of equal powers in e from [5] and [13] one can obtain that the functions f~; 
( i  = O, 1, 2 . . . .  ) satisfy the following equation: 

afli 1 1-0211i 1--/Z202[~i] 
d'r = M ['-~-r + r 2 0],/? J" [18] 

First, the zero approximation of the circumferential velocity is computed. 
Using the method of matched asymptotic expansions we have found 

oso0=/[2E(1-#2)e i~, osol=0, f f , 02=- (1 - i ) ( (1 -#2)Ee  i~ 

rio0 = I'll = 002 --- 0, o~o0 = o~o~ = o~02 = 0, 0300 = 05o~ = 0502 = 0, [19] 

where 

/~ = cos 0 and E = e -(~÷i)c . [20] 

These results are used in computing the first approximation to the function of the secondary 
flow satisfying the equations: 

1 04~o0 03~o0 2 cos 0 _ 0o5o0 
2 0 ~ - - - ~ - ~ - ~ = - ~  ~°o0 0~ [21] 

1 04~ol 03~ol _ 4V'(2) cos 0 0o5oo 2~/(2) _ 0o5o0 [22] 
2 - - ~ - - ~ - -  A2sinO s r t 3 o 0 - ~ - - ~  °~o0 00 

1 4 -  ~- 0 ~p02_ 0 ~Po2 _ 2(1 - #2) 04~1o . 2(1 - #2) 03.~1o 12 ~2 - cos 0 ao5o0 2 cos 0 _ 
/[2 0 0 2-  °'00sT 0 

0o300 0O502 2 cos 0 _ 005oo 003o0 8~" o5o0 . [23] 
X 0 (  ~ ¢ o 0 2 - - ~ - -  O502 00 A2sin0 00 

After  s o m e  algebra w e  h a v e  obtained:  

~o0 =/[2#(1 -/.t2){l(e-23- I) + 1 (+  c°s 2 ' -  sin 2r (I 
16 - %/(2)) 

_ e-2~ [cos 2(r - 0 - sin 2(r - ()] + e-Vt2)~" [cos (2r - V(2)() - sin (2r - V(2)()] 1 
16 8V(2) J 

_ ~2 [_25AT+7A~o+21hs_3 
8/ [  (4 / [  10 - -  2 5 / [  7 "F 42/[ 5 _ 25/[ 3 + 4) 

( 15/[7- 35/[~+ 35/[ 2 -  15)A3( - 30/[7+ 105/[ 2 -  75) ]}  
+ _ 5x(4/[1o_ 25/[7 +42/[~_ 25/[3+ 4) + 2(4A~o + 100/[ 7 -  147/[5 + 24/[3 + 26 A 22V(2)/z(1 p2) 

. , l l J  

ff~' : { -  ( 1 -  3) I c°s 2r + ~ 2  ( ` 1 -  x/2,`3/[5+2, ' 1 / 2 / [ ( 1 - / [ ' ,  *~  ~ - 5 ) ]  

× [e -x/(2)¢ cos (2r - V'(2)() + X/(2)((cos 2r - sin 2r) - cos 2r] 

¢ 2 
- ~-~ [ ( ~ -  5) (cos 2 r -  sin 2 r ) -  e-Z; cos 2 ( r -  st)- sin 2 ( r -  ( ) ]  

+ (1__ 3)COS 2 , r - ~ ' , - s i n  2 ( r - 1 6  e 2' ~"} 2V'(2,/~ (1-/z2,/[  2 
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where  the superscr ip t  s denotes  s teady  and u uns teady  state.  The equat ions  for  q, oo, q~o~ and ~oo~ 
are like [21]-[23]. It is easy  to find that  

(15A 7 - 35A 5 + 35A 2 - 15)A3B_/z(1 - / z  2) 
~Ooo = - 2[ - 5 ~ (4A 1o _ 25A7 + 42A ~ - 25A 3 + 4) + 2( - 4A ~o + 100A7 - -  14"7A ~ + 25A 3 + 26] 

( 450A8 - 7 5 A 7  - 5 1 0 A 6  + 205A 5 + 1 0 5 0 A  3 - 138A 2 - 450A + 30)'0 
~o ~]) = [ - 2"X/(2) [ - 5 r (4A ~o _ 25 A 7 + 42A 5 + 25 A 3 + 4) + 4A ~o + 50A 7 _ 243. 5 + 10a ~ - 10A + 20] 

(5K + 2)(15A 7 - 35A 5 + 35A ~ + 15)'02 } 
+ 2[ - 5~(4A ~o _ 25A7 + 42A's _ 25A ~ + 4) + 2( - 4A ~o + 100A7 _ 147A5 + 25A3 + 26)] 

× A~/z(1 _ ~2) 

Cg]) = { 5 ~ / ( 2 ) ( ? ( ] ~ -  1)A2 (cos 2 ,  - sin 2z)'0 

5(k/(2) 1)A2~ 
cos (2~- - V'(2) 7/) - cos 2r ]~  A2~(1 - / z 2 ) .  

In the region be tween  the boundary  layers  a round the drop  and on the conta iner  we will 
have 

- - r (D2*o)=l - -~zD4,o  [24] 

where  

Xl-tO = kI-?o0-+ ~---- kiJOl + ~ * 0 2  + . . .  . 

In addi t ion to the osc i l la tory  term we expec t  XI, o to contain an independen t  of r term 

*o = *o  ") + e2~i*otU). [25] 

The equat ion for  the uns teady  and s teady par ts  of *o  are 

i D4,~))  D 2 * ~ ) = 0 ,  D 2 * I ) ~ = 0 ,  D 2 * ~ ) = - ~  [26] 

D 4 * ~  ) = 0, D4*Co~ = 0, D ' * ~  ) = 0. [271 

The funct ions  *oo and *o |  are found to be 

I A 3g.(1 - / z  2) {~ 
* o o = ~ ' 4 ~ | o  25AT÷42 ,~g_25~3+4  [ ( - 2 A s + 2 5 ) t 2 - 3 ) r  5 

- ( -- 2A 7 + 7A 2 - 5 ) r  3 + ( - 5A 7 + 3~ ~ - 2) - (3~ 5 + 5A 3 - 2)AZr -2] 

7 5 2 5 5 7 3 7 5 4 2 2 2 (15A - 3 5 A  +35A__ - 1 5 ) [ 6 ( 1 - h  )r  +IO(A - 1 ) r  - 2 5 A  +21)t  + 4 + 1 5 ( A  - i t  )A r - ] ~  
2 _-- aVo ¥ j 

1 N/(2)(X/(2) - 1)A 4 (cos 2~" - sin 2 r ) ( r  3 - r-2) • ~ / z ( l  - / z  2) 
• ~'I) = 8(1 - ~5) 

q%'i) : { [ ( -  30)t 6 + 7A 5 + 75A 3 -  10A2-  45A + 3 ) r  ~ +(30A 8 -  5 ) t7 -  105A3 + 14Az+ 75A - 5)r  3 

- 150A 8 + 25A 7 - 49A 5 + 204A 6 - 300A + 50 + 
2 
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+90As - 15A7 - 150a62 + 35A5 + 60a'  - 8a2 r2] 

450~s - 7 5 A  7 - 510~ 6 + 205~ 5 + 1050A 3 - 1 3 8 A  2 - 450A + 30 
+ --5~(4A lO_ 25~7 + 42A5 _ 2 5 A 3  + 4 )  + 4~ lo + 50~7 + 24~5 + IOA3 _ 60~ + 20 

× [(3A 5 - 2A ~ - 3A + 2) r 5 + (3A 5 _ A7 _ 2)r 3 _ (2A lO + 3A5 _ 5A ~) + (2A ~o + A 7 _ 3AS)r] } 

A2~(I --/~2) 
× X/(2)(4A lO_ 25:t7 + 42A5 _ 25A3 + 4)" 

Similarly, for the region inside the drop we have equations: 

(i) In the boundary layer inside of the drop 

#4 C~3:.. 
r 2  ~ q ~v00 _ 

L 2 04~01 2 ~o~ 

./" 2 04~02 "-~'- 2 ~ =-4(I-'2)~ +4(I -'O~'O~j ~-~-~2 • 

(ii) In the nucleus of the drop 

D 2 q ~  ) = O, 

D ' * ~ '  = O, 

where 

D25~ ) = 0, D25['~ ) = - i L 2 D Y ~ ' ~  ) 

o ~ , [ ~  = o, D~, i ,~  ) = 0 

, p "  

For the functions in the boundary layer of the drop we have found 

io 35A",+ 3 5 : -  - 2) 
$oo = 2 [ -  5r(4A - 25A 7 + 42A - 25a + 4) + 2(-  4a + lOOa - 147A 5 + 25a 3 + 26)] 

8 7 6 5 3 2 (450A -75A -510A +205A + I050A - 138A +450A +30)7 
10 7 5 3 I0 7 5 3 2X/(2)[-5K(4~ --25~.+42~. Z25~ +4)+4 , t  +50~. -24,1 +10a - 1 0 ~ + 2 0 ]  

7(15a 7 - 35a 5 + 35~ 2 - 15)~2A 147~ 5 + 25a 3 + 26)] ]J' 
- 2X/2 [ -  5 K(4,1 ~° - 25A 7 + 42A" "25A Y~- 4) + 2( - 4A ,o + lOOA7 + 

In the nucleus of the drop we have 

~ ( 1  -- $~2)(15~.7 -- 35A 5 + 35A 2 -- 15)a3(r 5 - r 3) 
~oo = - ~[_ 5K (4A Jo_ 25 a 7 +42A 5 -25~. 3 + 4) + 2(" 4A io +lOOa 7 _ 147A5 + 25a 3 + 26)] 

~,~J = o 

(450A s -  75A 5 -  510A6+ 205A' + 1050A3 138A2-450A + 3 0 ) ( : -  r 3 ) ( - 1 ) # ( 1 -  

~ '~)= 2X/(2)[-  5r(4A zo_25AT.~42Js__25A~+4j+4Am+50AT_24~5+lOA3_60A+20]\~'/ 
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It is interesting to note that rotational speed is not equal to zero only in the Stokes shear 
layer on the container. In this way the primary flow is restricted to the boundary layer on the 
container. At the same time the secondary flow, i.e. the flow in the planes containing the axis of 

oscillation, has velocity components which are not equal to zero in the Stokes boundary layers 

and between them. There exists a nearly inviscid core in every quadrant between the boundary 

layers on the container and on the drop. 
The character of the secondary flow depends strongly upon the dimensionless frequency and 

parameters of the fluids inside and outside the drop. Figure 1 shows the steady streaming of the 
secondary flow for a mercury drop in water (M = 20, ,~ = 2, K = 1, y = 13.6). 

As can be seen from this figure, in addition to the vibrating motion of each fluid particle, we 

may have a pattern of three standing vortices, one in the inviscid core and two in the Stokes 

boundary layers. The circulation of the steady streaming in the core is directed clockwise but 
the two other vortices are directed counterclockwise. Figure 2 shows that when M = 20, ,~ --- 2, 
3' = 1.1 and K = 0.001 (for a water drop in Zerolene) there are two standing vortices in the 
secondary flow between the drop and the container. The steady streaming inside the drop is 

directed clockwise in figure I and counterclockwise in figure 2. 

~ o  M~20 
A~2 

Figure 1. The stationary streamline pattern; M = 20, ,~ ~ 2, ~, = 13.6, K ~ 1. 

r • _  M= 20 

-J l  3 i 
Figure2.The stationary streamline pattern; M = 20, A = 2, y = 1.1, K = 0.001. 
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M= 20 

A=2 

. 0,0 i 

Figure 3. The stationary streamline pattern; M = 20, ,t = 2, K--* oo. 

It is interesting to note that for the limiting case of very viscous drops (rigid body, figure 3), 
the steady streaming in the secondary flow is similar to that of figure 2. 

3. C O N C L U S I O N  

It has been found that, in the case of high frequency oscillations of the container, the 
primary flow is restricted to the boundary layer on the container. It becomes increasingly 
thinner as the frequency increases. Outside of this boundary layer the fluid motion is restricted 
almost entirely to the secondary flow in the planes containing the axis of rotation. There is a 
nearly inviscid core between the boundary layers on the container and on the drop. The flow of 
the core is driven by the boundary layer on the container. 

The character of the flow in the planes containing the axis of rotation depends strongly upon 
the dimensionless frequency and parameters of the fluids inside and outside the drop. In 
addition to the vibrating motion of each fluid particle we may have a pattern of three standing 
vortices (time independent circulations) in every quadrant between the fluid drop and the 
container. Since the circulation of the steady stream in the core is directed clockwise the other 
two vortices are directed counterclockwise. This steady streaming results from the nonlinear 
coupling of the first order periodic fluid particle velocities and creates stirring action which 
helps to achieve the above mentioned beneficial effects. 

It was found that the direction of the steady streaming into the inviscid core between the fluid drop 
and the oscillating container is always directed clockwise. When the ratio of the viscosity of the fluids 
inside and outside the drop is very small there is not a standing vortex in the boundary layer around 
the drop and the steady streaming into it is directed counterclockwise (figure 2). In the case when 
there is a standing vortex in the boundary layer around the drop the steady streaming into it is directed 
clockwise (figure l). At the same time for very viscous drops (rigid body, figure 3) the steady 
streaming into the region between the drop and the container is similar to that of figure 2. 
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